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The relation between unconventional superconduc-

tivity and magnetism in heavy-fermion (HF) sys-

tems [1], ferropnictides and cuprates is one of the

most interesting research topics in condensed mat-

ter physics. Despite certain fundamental differ-

ences related to the orbital structure of conduc-

tion electrons and their correlation strengths, it is

widely believed that in all cases short-range antifer-

romagnetic (AF) spin fluctuations are responsible

for Cooper pairing with finite angular momentum,

i,e., an unconventional gap function. Furthermore

the latter has a pronounced resonant feedback be-

low Tc on the spin excitations of the compound. One

example is the famous resonance peak observed in

high-Tc cuprates by means of inelastic neutron scat-

tering (INS) whose nature is still actively investi-

gated.

For some time this effect was considered as

unique for the cuprates, however currently a num-

ber of other examples, namely UPd2Al3, CeCu2Si2,

CeCoIn5 in the HF systems and Ba0.6K0.4Fe2As2,

BaFe1.84Co0.16As2 for the ferropnictides are known.

Therefore the resonant feedback is a universal phe-

nomenon in unconventional superconductors. It is

an interesting many-body effect and also a power-

ful tool to investigate the symmetry of the uncon-

ventional gap function Δ(k). In fact, it is not re-

stricted to superconductors. In Kondo semiconduc-

tors such as YbB12, which have no broken sym-

metry but show the gradual opening of a low en-

ergy hybridisation gap below the Kondo tempera-

ture a very similar resonance formation within the

semiconducting gap was found by INS. The disper-

sion of these resonance excitations depends on the

details of Fermi surface (FS) and gap anisotropy.

It is commonly centered around the wave vector

which has the dominating spin fluctuations for el-

evated temperatures. In most cases this is a com-

mensurate AF zone boundary wave vector, except

for CeCu2Si2.

In this report we will discuss the theory of spin

resonance formation in the HF superconductors

UPd2Al3, CeCoIn5 and the Kondo semiconductor

YbB12 in some detail, based on Refs. [2, 3, 4]. The

first HF example found was UPd2Al3 [5]. This com-

pound orders magnetically at TN = 14.3K, much

Fig. 1: Results for UPd2Al3. Top(a): Real (dashed lines) and
imaginary (full lines) parts of susceptibility χ0(Q,ω) (inset)
and CEF boson propagator D(Q,ω) (main figure). The INS
intensity is proportional to ImD(Q,ω) given by the full line
of the main figure. Here we used g = 10meV. b: Contour
plot of ImD(q,ω) as function of ω and qz. One clearly ob-
serves two distinct peaks at Q. The one at low energies rep-
resents the resonance peak (ωr) induced by the feedback of
superconductivity and the one at higher ω is the shifted CEF
boson ω̃q. Away from Q both peaks disperse upward in en-
ergy following the behavior of the normal state CEF boson
(from Ref. [2]).

higher than Tc = 1.8K, with a commensurate AF

ordering vector Q = (0,0, π
c ). The U 5 f 3 elec-

trons have a ’dual’ nature with localised 5 f 2 con-

figurations and an additional 5 f conduction elec-

tron. The former are split by the crystalline elec-

tric field (CEF) into two low-lying singlets an en-
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ergy Δ � 5.5meV apart. They disperse into a band

of propagating bosonic modes ωq between 1.5 and

8meV [6] due to RKKY interactions. The heavy

5f itinerant electrons form a corrugated cylinder FS

along the hexagonal axis. There is considerable evi-

dence that the bosonic modes lead to the quasiparti-

cle mass enhancement in the normal state and to the

Cooper pair formation [7, 8]. The gap function has

the symmetry Δsc(k) = Δsc
0 coskz and has (equiva-

lent) node lines at kz = ±π
2 which lie in the faces of

the AF Brillouin zone (BZ) boundary where the gap

function changes sign.

Below Tc INS experiments exhibit a sharp feed-

back resonance mode around Q with an energy

ωr � 0.3meV which lies within the SC excitation

‘gap’ 2Δsc
0 � 1meV and below the bosonic gap

ωQ � 1.5meV in the normal state. In this com-

pound the feedback resonance appears as a satel-

lite to an already existing dispersive CEF excitation

above Tc. This is different to the other cases dis-

cussed here where only a broad continuum is ob-

served above Tc. Although the SC feedback effect

in UPd2Al3 may be described phenomenologically

[5, 9], a complete microscopic explanation within

the dual model of McHale et al [8] only appeared

recently [2]. In this theory the conduction electrons

couple to the magnetic bosons with one component

of their spin density which renormalizes the bosonic

propagator according to

D(q,ω) = − 2ωq

ω2 − [ω2
q −2g2Δχ0(q,ω)]

(1)

Its spectral function S(Q,ω) = [1 −
exp(−βω)]−1 ImD(Q.ω) is proportional to

the INS cross section. The latter is therefore

determined by the frequency dependence of the

denominator in Eq. (1). In the normal state D(q,ω)
only has a single pole at the bosonic CEF mode

energy ωq. When the electron-boson coupling g is

sufficiently weak, only a frequency shift and change

in line width ensues in the SC state. However if g
is strong enough the propagator has two poles ω±
approximately given by

ω2
± =

1

2
[ω2

Q +(2Δsc
0 )2] (2)

±{1

4
[ω2

Q − (2Δsc
0 )2]2 +2g2ΔN(0)(2Δsc

0 )2} 1
2

The lower one ωr ≡ ω− is the resonance pole and

ω+ the up ward shifted bosonic frequency ω̃q. Us-

ing the appropriate values Δ = 5.5meV, ωQ =
1.54meV, g = 10meV, 2Δsc

0 = 1meV and N(0) =

Fig. 2: Top(a): Calculated Fermi surface of CeCoIn5 from
hybridisation model in Eq. (3). Nesting vector QAF is in-
dicated, dashed lines are node positions of B1g gap func-
tion. Bottom(b): Calculated static spin susceptibility ex-
hibits maximum at nesting vector (from Ref. [3]).

2states/eV for conduction electron DOS we obtain

the upward shifted boson frequency ω̃Q = 1.89meV

and resonance position ωr = 0.23meV < 2Δsc
0 , in

reasonable agreement with the peak positons of the

fully numerical calculation of the spectral function

in Fig. 1. An essential signature of a sharp reso-

nance is the inequality ωr < 2Δsc
0 , i.e. that it ap-

pears below the quasiparticle continuum threshold.

The reason for the existence of ωr is the strong fre-

quency dependence of the conduction electron spin

susceptibility χ0(q,ω) for ω � 2Δsc
0 in the super-

conducting state (see inset of Fig. 1a). This is true

only if the quasiparticle matrix elements or ’coher-

ence factors’ in χ0(q,ω) are large. For q close to the

AF Q vector this requires that the gap function satis-

fies the condition Δsc
k+Q = −Δsc

k (sign change under

translation). Reversing the argument an observation

of a well formed resonance at Q with energy ωr <
2Δ0 excludes any gap function model which does
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Fig. 3: Left(a): Calculated real (dashed) and imaginary (full) part of the RPA susceptibility at Q for CeCoIn5 as function
of frequency in the normal and superconducting state of B1g(dx2−y2) symmetry. Imaginary part shows the spin exciton peak.
Right(b): Dispersion of the resonance peak along (q,q, π

c
) direction using a Lorentzian shape of Jq around Q (from Ref. [3]).

not satisfy this condition, specifically those without

sign change transforming like Δsc
k+Q = Δsc

k . Com-

bined with Knight shift experiments which point to

singlet pairing the resonance formation in UPd2Al3
is therefore a strong argument for a gap function

Δsc
0 coskz [2]. Indeed this is also fully compatible

with angle resolved magnetothermal conductivity

results [10, 11]. Finally Fig. 1a shows the dispersion

of the (lower and most intense) resonance branch

and the upper magnetic boson branch ω̃q. The res-

onance dispersion simply follows the latter which

steeply increases away from Q as a satellite excita-

tion.

The resonant SC feedback effect has sub-

sequently been found in other HF com-

pounds, namely, in CeCoIn5 at ωr = 0.6meV

and Q = (π
a , π

a , π
c ) [12] and in CeCu2Si2

at ωr = 0.2meV with an incommensurate

Q = (0.22 π
a ,0.22 π

a ,0.51 π
c ) [13]. Here we dis-

cuss only the former because for commensurate Q

theoretical arguments for the resonance appearance

are more clearcut.

In CeCoIn5 the hybridsation of 4 f 1 electrons with

conduction electrons leads to a multisheeted FS of

heavy electrons which may be approximately de-

scribed by an f -band (E f
k ) and conduction band (εk)

model with (effective) hybridization (Vk) [14] of the

type

E2k =
1

2

[
(εk +E f

k )−
√

(εk −E f
k )2 +4V 2

k

]
(3)

Where the lower band given here is partly occu-

pied and leads to main FS sheets consisting of

strongly corrugated collumns along the tetragonal

axis (Fig. 2a). As indicated this FS has a nest-

ing property with a commensurate wave vector Q =
(π

a , π
a , π

c ). Therefore the noninteracting (Lindhard)

spin susceptibility has a pronounced maximum at

the nesting vector in the normal state which has

been confirmed by INS results [12]. The mag-

netic response of the interacting HF quasiparticles

is given by the RPA expression

χRPA(q,ω) =
χ0(q,ω)

1− Jqχ0(q,ω)
(4)

where Jq is the four point interaction of quasiparti-

cles and χ0 their noninteracting susceptibilty, both

in the normal or superconducting state. This ex-

pression is related but not identical to the boson

propagator in Eq. (1). In the case of CeCoIn5

there are no low energy propagating CEF bosons

in the normal state. Therefore this equation leads

to a featureless magnetic spectrum above Tc. How-

ever for T < Tc a pronounced frequency depen-

dence of χ0(q,ω) evolves due to the gap open-

ing. For large momentum q � Q, Im χ0(q,ω) ex-

hibits discontinuous jump at the threshold energy

Ωc = mink(|εk|+ |εk+Q|) with an associated loga-

rithmic peak in the real part of the susceptibility.

Therefore a resonance or spin exciton pole appears

in the RPA response function at an energy ωr < Ωc.

Note that in contrast to UPd2Al3 only the lower

resonance pole exists since there is no propagat-

ing CEF boson present. As before the discontinuity

and the pole appear when the coherence factors in

χ0(q,ω) are large which means that Δsc
k+Q = −Δsc

k

must be fulfilled. Indeed, it turns out that among

the possible candidate gap function with tetrago-

nal symmetry only the B1g gap functions (‘dx2−y2
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Fig. 4: Results for YbB12. Left(a): Imaginary part of the susceptibility for the noninteracting (Jq = 0) and interacting case
(finite Lorentzian Jq peaked at Q). Right(b): Contour plot of imaginary part of RPA dynamical susceptibility with Lorentzian
interaction JΓ(q). Parameters are chosen to obtain spin exciton peaks at ω1 = 15meV and ω2 = 20meV at the (1,1,1) zone
boundary. These positions and shape and range of dispersion are comparable to experimental results. The inset shows the
contour plot of imaginary part of dynamical susceptibility of noninteracting degenerate bands in the direction (1,1,1) for
comparison, showing the indirect hybridisation gap. The color scale of the inset is reduced by a factor of 35. Energy scale
t = 0.32eV (from Ref. [4]).

wave’) Δsc(k) =
Δsc

0 (k)
2 (coskxa−coskya) which sat-

isfies this condition leads to a spin resonance for-

mation below Tc. This is shown in Fig. 3a. In

CeCoIn5 the symmetry of Δ(k) has been contro-

versial and was predicted as dxy from specific heat

and dx2−y2 from thermal conductivity measurements

under rotating field geometry. Since the observa-

tion of a resonance peak requires Δk+Q = −Δk it is

clear that INS results [12] decide in favor of dx2−y2

gap symmetry because dxy has no sign change under

k → k+Q contrary to dx2−y2 . Therefore INS is an

additional powerful tool to investigate gap function

symmetry of unconventional superconductors.

Finally in Fig. 3b the dispersion of the resonance

excitation away from Q is shown. It bends down-

ward because one must have ωr < Ωc and the lat-

ter is reduced for the wave vector (qx,qy,
π
c ) since

it connects states in the BZ where the supercon-

ducting gap is smaller. This downward dispersion

is quite similar to the main feature in the cuprates

but opposite to the observation in UPd2Al3 where

the upward dispersion is not an intrinsic property of

the resonance pole, but is enforced by the dispersion

of the normal state CEF boson. The dispersion in

CeCoIn5 is sensitive to the model parametes, exper-

imentally it has not yet been investigated in detail.

The spin resonance type excitations have recently

also been observed for the ferropnictide super-

conductor Ba0.6K0.4Fe2As2 and BaFe1.84Co0.16As2.

These compounds have small hole like FS sheets

and electron sheets at the zone center and bound-

ary, respectively, connected by a nesting vector Q =
(π

a , π
a ,0) This means the gap function must change

sign between the hole and electron sheet. Combined

with ARPES results which show that the gap is

nearly isotropic on the sheets this leaves little choice

but the extended s±-wave state which may be repre-

sented as Δsc(k) =
Δsc

0 (k)
2 (coskxa+ coskya) [15].

The spin resonance phenomenon observed in un-

conventional superconductors is connected with a

special symmetry property of the order parameter

or gap function. However the broken symmetry is

not a necessary condition. In fact a very similar

phenomenon was observed in the small gap Kondo

semiconductor YbB12. There the gap opening is

not due to spontaneous order but due to a grad-

ual crossover from a metallic state at higher tem-

peratures whereby a hybridisation gap is opened.

The gap size of 15meV is of the order of the

Kondo temperature and may be observed in ther-

modynamic and transport properties but also di-

rectly by INS [17]. In addition the unpolarized [17]

and polarized [18] INS has found an interesting

dispersive fine structure around the semiconduct-

ing gap threshold. Three excitation branches have

been identified with energies 15, 20 and 38meV,

respectively by analyzing the spectral function of

the dynamical susceptibility. Since the lower two

INS peaks are narrow and mostly centered at the

zone boundary L-point with Q = (π/a,π/a,π/a)
they may be associated with the formation of a col-

lective quasiparticle spin resonance exciton appear-
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ing around the spin gap threshold [17, 18] which is

driven by heavy quasiparticle interactions. The col-

lective modes remain visible in the 20meV region

up to T = 159K. The upper peak is much broader

and shows little dispersion. It is also rapidly sup-

pressed with increasing temperature. It has been as-

sociated with continuum excitations also visible in

a broad maximum in the optical conductivity [19]

around 38meV.

The theoretical explanation of these intriguing

experiments has been previously unclear and was

recently given in Ref. [4]. The model assumes the

stable Yb 4 f 13 configuration corresponding to a sin-

gle hole in the 4 f -shell [20]. Therefore, the Ander-

son lattice model with a f -hole in a j = 7/2 state,

including the CEF effect is used as a starting point.

The latter leads to two quasi-quartets (Γ = 1, 2) split

by an energy Δ and having a different hybridisa-

tion VΓ. Using the mean field slave boson repre-

sentation of the Anderson lattice Hamiltonian where

only no hole (4 f 14) and single hole (4 f 13) configu-

rations are included the CEF-split heavy quasiparti-

cle bands may be derived [4]. From this one obtains

the noninteracting spin response with the single par-

ticle spin gap of 15meV (inset of Fig. 4b) and the

interacting RPA susceptibility. The former, due to

the gap threshold shows a pronounced enhancement

in the real part which leads to the spin exciton pole

in the latter. Here the role of coherence factors is

played by the c-f mixing amplitudes of the heavy

quasiparticle states. The spectrum of the noninter-

acting and RPA susceptibility are shown in Fig. 4a

where one can clearly see a double resonance peak

evolving from the one particle background. The

double peak structure is due to the effect of CEF

splitting and, more importantly different hybridis-

ation strengths VΓ (Γ = 1, 2) of the quasi-quartets.

The model parameters have been chosen to repro-

duce the experimental peak positions and the dis-

persion (Fig. 4b). The latter extends about one third

into the BZ which is due to the strong suppression of

the real part of χ0(q,ω) when one moves away from

the AF Q-vector where one has excitations with the

small indirect hybridsation gap. The features of the

theoretical spin exciton dispersions correspond very

nicely to the experimentally observed ones [18]. We

note that an increase in JQ (or a decrease of the hy-

bridsation gap) will lead to a decrease of the spin ex-

citon mode frequencies at Q. At a critical value Jc
Q

the lowest mode would become soft which would

signify the onset of AF order in a Kondo semicon-

ductor. This is not observed in YbB12 at ambient
pressure. An investigation of the pressure depen-

dence of spin exciton mode frequencies at Q might

therefore be interesting because it would offer im-

portant clues as to how close YbB12 is to a quantum

phase transition to AF order.
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