
Introduction

The chemical bonding in a molecule or solid can be
analyzed from different viewpoints. Of great
importance is the decision about what should be the
basis of an analysis of the bonding situation. 
On one hand, the particular components of the
wavefunction of the system (respectively the corre-
sponding density matrix) can serve as the basis for
the desired bonding descriptors. Then, separate
molecular orbitals or valence bonds can be exam-
ined and overlap integrals, occupation numbers and
weights of structures computed. Such an approach
is pictorially very appealing and serves as more or
less solid background for the rationalization of
chemical structures as well as in classrooms where
the basics of quantum chemistry are taught.
However, such objects as orbitals are just mathe-
matical instruments to describe many- body wave-
functions, which in turn are mathe matical objects
serving as the basis for the description of density
matrices.

On the other hand, functions created by the
action of a suitable operator on the wavefunction
and the combination of such functions can be ana-
lyzed. Following this viewpoint the Laplacian of
electron density, different kinetic energy functions,
gradient fields, etc. can be inspected and reason-
able bonding descriptors searched for. This view-
point can be extended to functionals based on inte-
grals of density matrices over particular space
regions. In this case the approach depends on the
choice of the density matrix as well as the integra-
tion regions. For instance, the electron density (i.e.,
the diagonal part of the 1-matrix) integrated over
regions bounded by the surface of zero-flux in the
electron density gradient (so called basins or
“atoms” in the QTAIM approach [1]) yields the
electronic populations in the corresponding regions
and thus, the charge of the “atomic” units.
Similarly, the integrals of the 2-matrix over two
chosen basins give access to the delocalization
indexes [2]. Such a viewpoint can further be gener-
alized to evaluate not just the integral for a single
region, but a whole distribution of integrals over

regions determined by a suitable space partitioning.
The basic idea behind this approach is to examine
the desired property (given density matrix integral)
under the same conditions specified by a fixed
amount of chosen (control) quantity.

Electron Localizability

The expectation value of an operator is given as the
integral of the action of the operator on the density
matrix over the whole space. If the whole space is
partitioned into non-overlapping mutually exclu-
sive space filling regions, then this integration can
be performed over each region separately and final-
ly, the results can be summed up. In case of a sin-
gle variable there are only integrals over each
region, whereas for integrals dependent on two
variables there are also terms in which each vari-
able runs over different regions. Consequently, the
total integral (expectation value) is given as a sum
of two terms – the intra-region values and the inter-
region values. 

The regions could have any form. To get a local
effect the regions must be “compact”. We define
the “compactness” by minimizing the sum of vari-
ances of the coordinates around the mean coordi-
nate of each region. In other words, each region
should be as “spherical” as possible. 
To get regions of the same “quality” we require the
integral of a chosen function (the control property)
to yield the same fixed value ω for each region
(termed a μ-cell) of the partitioning. Such a parti-
tioning procedure will be termed the ω-restricted
space partitioning [3]. 

Now, another function (the sampling property) can
be integrated over the μ-cells of the partitioning. For
instance, the population in each μ-cell can be deter-
mined. This procedure yields a discrete distribution
of charges that can be analyzed. For a given sam-
pling property the values of the integrals depend on
the value of the ω-restriction. However, if the
restriction is small enough, then the values will scale
with the restriction. The scaling can be removed to
yield an ω-restriction independent expression.
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Let us adopt for the term localizability the view
that it describes the tendency of a single electron to
be separated from the other electrons. Thus, the
motion of the single electron is correlated with the
motion of the other ones [4]. High localizability
means that the electrons try to avoid each other.

Such avoidance can be quantified by means of
the charge sampled over μ-cells enclosing a fixed
number of electron pairs (restricted populations
approach). The resulting expression is called elec-
tron localizability indicator, abbreviated ELI-D (to
emphasize the electron pair restriction). The values
of ELI-D are proportional to the probability that the
population (charge) in a μ-cell can be attributed to
a single electron (with all other electrons outside
the μ-cell). It shows to which extent the μ-cell is
(spatially) occupied by a single electron. This
approach can be realized at any level of theory as
long as the electron density and electron pair den-
sity are accessible [5]. In Fig. 1 the real space rep-
resentation of ELI-D for the C60 molecule is pre-
sented. The high ELI-D values between the carbon
atoms indicate that in those regions the same-spin
electrons avoid each other.

For the density matrices given in the momentum
space representation the whole procedure can be
applied without any changes. The corresponding
momentum space form of ELI-D describes to
which extent a certain region of momenta can be
attributed to a single electron [6]. Fig. 2 demon-
strates the momentum space representation of ELI-
D for the C60 molecule. It can be seen that the
same-spin electrons are localized in particular
regions of momenta. In a general case the localiz-

ability value for a certain momentum region is gen-
erated from the 2-matrix data of the whole real
space (Fourier transformation). Direct correspon-
dence between the real space and momentum space
regions of localizability can be achieved only in
case of localized orbitals [6].

Choice of Pairs

The space partitioning can be performed by fixing
the pair density integral. However, there are differ-
ent possibilities for this. The electron pair density
can be split into contributions from the same-spin
and opposite-spin electron pairs, respectively. As
there is no Fermi-hole for the opposite-spin elec-
trons, there will be different formulas for the pair
density integrals and thus for ELI as well (due to
the Taylor expansion). Even more, the calculation
of the electron localizability indicator for the oppo-
site-spin pairs is reasonable only at correlated level
[7, 8]. In this case the space partitioning is based on
the charge resulting in the form termed ELI-q.

For the same-spin form of ELI-D one must face
the fact that in case of a spin-polarized calculation
two ELI-D distributions, one for each spin, need to
be analyzed. Such two distributions can be very
different, especially when the majority-spin occu-
pies antibonding orbitals, like for the spin-triplet
O2 molecule, cf. the diagrams (a) and (b) in Fig. 3.

Here, another decomposition of the 2-matrix can
be utilized which is invariant with respect to the
spin rotation and yields the 2-matrix as sum of two
parts – the symmetric and the antisymmetric one.
The corresponding electron densities and pair den-
sities describe electrons coupled to a singlet and
triplet, respectively. Following the restricted popu-
lations approach the above densities can be used
for the ELI definition.

Fig. 1: Position space representation of ELI-D for the C60

molecule.

Fig. 2: Momentum space representation of ELI-D for the
C60 molecule.
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As the density of the triplet-coupled electron pairs
involves both αα and ββ same-spin pairs (and
opposite-spin pairs as well), the corresponding ELI-
D, cf. the diagram (c) in Fig. 3, results in a single
distribution for the spin-polarized wavefunction [9]. 

The density of the singlet-coupled electrons
involves only the opposite-spin electron pairs. To
match the chemical expectation with respect to the
chosen bonding descriptors (regions of high ELI
values) the charge-restricted partitioning is chosen
resulting in ELI-q. The ELI-q bonding descriptors
for the singlet-coupled electrons emerge only at
correlated level as shown in Fig. 4 for the O2 mol-
ecule. Low ELI-q values are associated with
regions where the electrons coupled to a singlet
tend to avoid each other. The ELI-q values are con-
nected with the tendency of the (fixed) electron
population to couple to a singlet pair. 

Charge Decomposition of ELI-D

The electron localizability indicator was defined to
be proportional to a discrete charge distribution.
For such a distribution the charge within each μ-
cell can be given as the product of the electron den-
sity at the μ-cell center and the volume of the μ-cell
(sufficiently small, with size controlled by the
restriction). The discrete charge values can be for-
mally decomposed into contributions, for instance
from orbitals or orbital groups within a chosen
energy range, or a region in k-space in case of a
solid state calculation. 

Actually, each ELI-D value can be seen as a
product of the electron density and the so called
pair-volume function (proportional to the volume
of a fixed amount of electron pairs around given
position). The orbital decomposition of ELI-D
allows to analyze the contribution of particular
orbitals to the electron localizability [10]. The dis-
tribution based on a chosen set of orbitals is abbre-
viated pELI-D (“p” for partial). 

For instance, the N2 molecule exhibits a single
ELI-D bond attractor between the atoms. Why does
the separation into two bond descriptors, represent-
ing the σ and π bonds, not occur? This can be seen
from the pELI-D diagrams in Fig. 5. Inspection of

Fig. 3: ELI-D for the O2 molecule. (a) majority spin; (b)
minority spin; (c) triplet-coupled electrons. Red ELI-D iso-
surfaces display the single-attractor and the split-attractor
scenario, respectively.

Fig. 4: ELI-q for the O2 molecule: singlet-coupled elec-
trons. The red ELI-q isosurface displays the single-attrac-
tor scenario.

Fig. 5: pELI-D for the N2 molecule. (a) π orbital; (b) σ or-
bitals; (c) π and σ orbitals
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the diagram (a) shows, that the π contributions do
form a ring attractor around the bond midpoint,
whereas the sum of the σ contributions results in a
point attractor. In the sum of all orbitals contribu-
tions the π part is not pronounced enough to give
rise to a separate (total) ELI-D attractor. 

High pELI-D contributions to the total value are
achieved especially by localized orbitals. The dia-
gram (a) in Fig. 6 depicts the pELI-D contributions
of the Boys localized orbitals in the position space
(e.g., the green isosurface is due to the π bonds).
The correspondence of the pELI-D contributions to
the distinct bonding features is clearly highlighted.
This can be further utilized to find the correct cor-
respondence between the ELI-D pattern in the real
space and momentum space. Now, in the diagram
(b) of Fig. 6 it is easy to recognize to which de -
scrip tor in the real space the momentum space
regions corresponds to. It should be noted that the
π bonds are localized above the pxpy plane, i.e.,
located in region of momenta directed perpendicu-
lar to the molecular plane.

The evaluation of pELI-D was also utilized in the
analysis of solid state density matrices. In this case
the contributions of bands from separate energy
ranges (DOS regions) are used [11,16]. 

Direct Space Decomposition of ELI-D

The ELI-D can be formally written as the product
of the electron density and the pair-volume func-
tion. The topology of the distribution can be ration-
alized with the signature of the corresponding
Laplacian. The occurrence of a maximum implies
the existence of three negative principal curvatures
of the analyzed function at the given position. The
Laplacian of the ELI-D can formally be expressed
as a sum involving the Laplacian of both the elec-
tron density and the pair-volume function as well
as an additional mixed gradient term. With this pro-
cedure it is possible to rationalize the evident sim-
ilarity between the topology of ELI-D and the
topology of the electron density Laplacian [12].
However, even if the atomic shells are not resolved
by the electron density Laplacian, like in case of
transition metal atoms, ELI-D still shows the atom-
ic shell structure due to the influence of the (always
negative) mixed gradient term. 

In case of the F2 molecule there is a double max-
imum of ELI-D along the internuclear line [10], cf.
Fig. 7. The topology of the electron density as well
as the pair-volume function is the one expected for

Fig. 6: pELI-D for the C6H6 molecule. (a) localized orbital
contributions in real space; (b) momentum space image.
The colors of the pELI-D isosurface denote corresponding
contributions of position and momentum space.

Fig. 7: Direct space decomposition for the F2 molecule. (a)
ELI-D; (b) components along the internuclear line; (c) gra-
dient terms; (d) relative Laplacian terms.

SELECTED RESEARCH REPORTS

68



a homonuclear dimer (bond critical point for the
density and a ring critical point for the pair-volume
function). The double-wave structure of the �lnρ
curve, cf. the diagram (c) in Fig. 8, gives rise to the
three critical points in the internuclear region, i.e.,
the double-maximum of ELI-D occurs. Remark -
ably, the relative Laplacian of the pair-volume
function, see the diagram (d), is negative at the
bond midpoint and displays a shape typical for a
single bond. It is noteworthy that the density
Laplacian is positive at the bond midpoint, even for
a MRCI calculation. The negative Laplacian of
ELI-D at the bond midpoint appears solely by the
dominance of the negative relative Laplacian of the
pair-volume function [12].

Bond Descriptors

Since ELI-D resolves the atomic shell structure up
to Xe not only qualitatively, but also with electron
populations (connected with the shells) that are
close to the desired numbers from the Aufbau prin-
ciple, there remains a conveniently defined valence
region. In chemical systems, the complete valence
region is further partitioned into parts (basins)
which again have locations and electronic popula-
tions supporting chemical concepts.

An important topic is the analysis of metal–metal
bonding situations. In a solid the variety of con-
stellations of ELI-D localization domains and
basins can be very high even for relatively simple
structures. This variety has been utilized to classify
the hexagonal element structures into seven pat-
terns, depending on the location of ELI-D basins
[13]. Fig. 8 presents the irreducible localization
domains and the corresponding ELI-D basins for

the hexagonal Sc, classified as pattern II. It can be
seen that for this type there is one attractor in the
octahedral position whereas a second one shares
two tetrahedral voids.
For the understanding of the complex bonding sce-
narios in intermetallic solids the study of prototype
molecular systems is of great importance. As a
matter of fact, molecular systems can be treated
with higher quantum mechanical (e.g. explicitly
correlated density matrices) and technical accuracy
(basis sets), and the structural complexity can be
strongly reduced. These studies serve to generate
new ideas about metal–metal bonding situations,
which in turn lead to the development of new tools
for their analysis. Recently, in our cooperation with
Prof. R. Kempe (University of Bayreuth) within
the DFG “Schwerpunktprogramm 1166” we ana-
lyzed one of the very rare examples of a non-
bridged transition metal–rare earth metal bonding
situation which occurs in homoleptic bimetallic
complexes Cp2Re–RECp2 (with RE = Y, Yb; Cp =
C5H5) [14]. The bonding turns out to be of a polar
donor–acceptor type with the transition metal dis-
playing a special type of lone pair. With the under-
standing of this type of interaction, the subsequent
treatment of a more complex Os–La bonding situa-
tion as found in the intermetallic compound
La7Os4C9 was achieved [15]. The bimetallic
donor–acceptor scenario is extended to a poly-
metallic one, where an Os species displays two
lone pair type features, each of which is shared
with up to five La neighbors (Fig. 9).

Fig. 8: ELI-D for hexagonal Sc: isosurfaces and basins.

Fig. 9: La7Os4C9: Os–La bonding situation using ELI-
D/QTAIM intersection. Translucent grey regions represent
QTAIM Os and La atoms. Opaque regions display lone pair
type ELI-D basins leaking out of the Os atomic regions (cut
by a mirror plane) into the La atomic regions.
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Concerning homoatomic metal–metal bonding we
recently analyzed an example of an “ultrashort”
(within 1 pm the shortest metal–metal distance in a
stable molecule at all) Cr–Cr bond of 175 pm
occurring in an amidopyridinato-complex [16].
The chemical bonding description for this type of
compounds which are claimed to display
metal–metal 5-fold bonding (one σ-, two π-, and
two δ-type bonds) represents a challenge, both for
electronic structure methods for generating the
wavefunction, and for chemical bonding descrip-
tors. Our results, based on DFT calculations, yield
signatures for weak δ-type bonding and a bond
order (calculated from the delocalization index [2],
mentioned in the “Introduction”, between the
QTAIM Cr atoms) of 4.2 [16]. The bonding sce-
nario is characterized not only by electron localiz-
ability attractors in the valence region (Fig. 11), but
also by sizable Cr(3rd shell)–Cr(3rd shell) delocal-
ization index contributions of 2.4. This extreme
case shows that a complete chemical bonding
analysis in position space between transition ele-
ments needs to take into account those electrons
from the penultimate shell, that are found to signif-
icantly delocalize into the valence region. In the
case of transition metal single bonds much smaller
values are calculated, e.g., a delocalization index
value of 0.29 between the QTAIM Mn atoms in
Mn2(CO)10 [17].

Conclusion

With the use of ω-restricted space-partitioning var-
ious electron localizability measures have now
been introduced which are all based on a general
many-body time-dependent pair density. The phys-
ical transparency of these ELI variants gives rise to
the development of analysis tools for a deeper
understanding of the underlying mechanisms for
the generation of distinct topological ELI features,
that are specific for certain bonding scenarios.
Together with the core part of QTAIM theory, pio-
neered by R. F. W. Bader and further developed by
a small number of groups worldwide, they provide
a powerful framework for the analysis of chemical
bonding in physical space, i.e., position and
momentum space.

References

[1] R. F. W. Bader, in Atoms in Molecules – A
Quantum Theory (Claredon Press, Oxford, 1995).

[2] X. Fradera, M. A. Austen, and R. F. W. Bader, J.
Phys. Chem. A 103 (1999) 304.

[3] M. Kohout, Int. J. Quantum. Chem. 97 (2004) 651.
[4] R. F. W. Bader, M. E. Stephens, Chem. Phys. Lett.

26 (1974) 445.
[5] M. Kohout, F. R. Wagner, and Yu. Grin, Theor.

Chem. Acc. 112 (2004) 453.
[6] M. Kohout, Faraday Discuss. 135 (2007) 43.
[7] M. Kohout, F. R. Wagner, and Yu. Grin, Theor.

Chem. Acc. 113 (2005) 287.
[8] V. Bezugly, P. Wielgus, F. R. Wagner, M. Kohout,

and Yu. Grin, J. Comput. Chem. 29 (2008) 1198.
[9] M. Kohout, F. R. Wagner, and Yu. Grin, Theor.

Chem. Acc. 119 (2008) 413.
[10] F. R. Wagner, V. Bezugly, M. Kohout, and Yu. Grin,

Chem. Eur. J. 13 (2007) 5724.
[11] cf. “Concerning Carbo Compounds: On the Nature

of C2 Units”
[12] F. R. Wagner, M. Kohout, and Yu. Grin, J. Phys.

Chem. A 112 (2008) 9814.
[13] A. I. Baranov and M. Kohout, J. Comp. Chem. 29

(2008) 2161.
[14] M. V. Butovskii, O. L. Tok, F. R. Wagner, and R.

Kempe, Angew. Chem. Int. Ed. 47 (2008) 6469.
[15] E. Dashjav, Y. Prots, G. Kreiner, W. Schnelle, F. R.

Wagner, and R. Kniep, J. Solid State Chem. 181
(2008) 3121.

[16] A. Noor, F. R. Wagner, and R. Kempe, Angew.
Chem. Int. Ed. 47 (2008) 7246.

[17] C. Gatti, D. Lasi, Faraday Discuss. 135 (2007) 55.

Fig. 10: RCr–CrR with (R = C5NH4NH): ELI-D slices and
blue 1.44-localization domain displaying penultimate shell
structuring; translucent red surface shows Cr QTAIM
basin.

SELECTED RESEARCH REPORTS

70


