Kondo-Ion Electron-Spin Resonance

Jörg Sichelschmidt, Ilshat I. Fazlizhanov¹, Julia Ferstl, Christoph Geibel, Zakir Hossain, Takashi Kambe², Hans-Albrecht Krug von Nidda³, Jan Wykhoff, and Frank Steglich

One major focus in condensed matter physics is the investigation of compounds where strong correlations among the charge carriers cause unusual, not-understood properties. In this respect, the spin (magnetic) degrees of freedom of the electrons are of particular interest. Here, electron-spin resonance (ESR) spectroscopy allows to investigate elementary magnetic excitations in a standard setup at energies of the order of 0.1 meV.

We performed a detailed ESR study of the strongly correlated electron systems YbRh₂Si₂ [1] and YbIr₂Si₂ which both exhibit heavy-fermion behavior, i.e., strongly enhanced coefficients of both the electronic specific heat and the T^2 term in the electrical resistivity. These compounds are located very close to a quantum critical point (QCP) corresponding to the disappearance of antiferromagnetic (AF) order (due to the increasing f-hybridization) [2, 3]. Low-temperature thermodynamic, transport and magnetic properties suggest that, when approaching the QCP, the heavy quasiparticles seem to disintegrate into a charge part (current) and a spin part (magnetism) [4]. This break-up of heavy quasiparticles was successfully described within a locally critical (LC) scenario [5]. The ESR signal in these compounds clearly shows properties typical of a local Yb³⁺ spin [1]. Obviously, the ESR of the Kondo-ion itself is observed displaying its local character and, therefore, providing experimental evidence for the LC scenario.

There is a considerable amount of literature focussing on ESR investigations of heavy-fermion compounds doped by paramagnetic probes (Gd^{3+} in most cases, see reviews [6, 7]). In the case of YbRh₂Si₂, the observed Kondo-ion ESR linewidth is about three orders of magnitude smaller than the linewidth $k_{\rm B}T_0/\mu_{\rm B}\cong 37$ T estimated from the spin fluctuation temperature $T_0\cong 24$ K inferred from thermodynamic measurements [2]. In order to understand the small linewidth and to reveal the underlying mechanism, additional information is desirable and has been found by investigating the ESR in YbRh₂Si₂ doped either by Ge on the Si site [8] or by La on the Yb site. Both dopands change the 4 f-conduction electron hybridization and

hence, the distance to the QCP. In YbIr₂Si₂, with $T_0 \approx 40$ K, Ir replaces the smaller Rh resulting in the same effect. The properties of the ESR line are found to be sensitive to this distance [1,8].

Experiment

ESR probes the imaginary part of the dynamic susceptibility Im $\chi(q=0,\omega)$, and it is sensitive to the local electronic properties of the 4f ions. The experimentally probed quantity is the absorbed power P of the sample in a transversal magnetic microwave field (frequencies 9.4 GHz and 34.1 GHz) as a function of an external, static magnetic field B. We used single crystalline platelets of YbRh₂Si₂ (pure [1,8] and doped by Ge on the Si site [8] or La on the Yb site [9]) and YbIr₂Si₂ [10]. The preparation of these samples as well as their magnetic and transport properties have been described elsewhere [2, 3]. The sample temperature was continuously varied between 0.8 K and 50 K with 3 He and 4 He cryostats of both flow and bath type.

Results

Figure 1 shows a typical spectrum of YbRh₂Si₂ which is recorded as dP/dB vs. B at a frequency of ν = 9.4 GHz. The asymmetry of the Lorentzian-type line shape ("Dysonian") is due to a non-vanishing dispersion contribution to the line and is typical for metallic samples in which the penetration depth is smaller than the sample size, as in our case. From a fit of the experimental spectrum to a Dysonian shape we determined the ESR parameters: resonance field ($B_{\rm Res}$), linewidth (ΔB), and line intensity ($I_{\rm ESR}$).

The value of $B_{\rm Res}$ and its angular behavior clearly identify the Yb³⁺ spin as the ESR probe in a tetragonal crystalline symmetry. The inset of Fig. 1 demonstrates the strong anisotropic behavior of the ESR line when the crystal is rotated as shown in the sketch. With $g = h\nu/\mu_{\rm B}B_{\rm res}$, $g_{\perp} = 3.561 \pm 0.006$ and $g_{\parallel} = 0.17 \pm 0.07$ are obtained at T = 5 K. These values are typical for the Yb³⁺ (crystal-field derived)

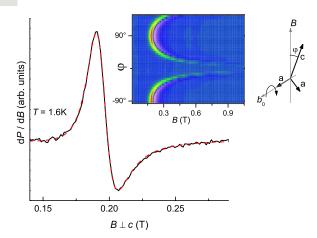


Fig. 1: Representative ESR spectrum of $YbRh_2Si_2$ at T=1.6 K, i.e., well below the Kondo temperature (25 K). The red dashed line describes the spectrum by a "Dysonian" shape. The inset illustrates the extreme angular dependence of the ESR spectrum observed when rotating the crystal as shown in the sketch (b_0 : microwave magnetic field).

This reveals the origin of the resonance, namely local Yb^{3+} spins in a crystalline electric field with tetragonal symmetry.

Kramers doublet ground state $^2F_{7/2}$ in tetragonal systems, with possible wave function symmetries Γ_6 or Γ_7 [11], and with close consistency to the large magneto-crystalline anisotropy seen by magnetic susceptibility measurements [2]. Similar results with weaker *g*-value anisotropy are found for YbIr₂Si₂ [10].

The ESR intensity $I_{\rm ESR}$ corresponds to the uniform static susceptibility of the ESR probe ions. Typical local moment character is displayed by a Curie-Weiss type temperature dependence of $I_{\rm ESR}(T)$ with a negative Weiss temperature [1, 8, 12]. By comparing $I_{\rm ESR}(T)$ of YbRh₂Si₂ with $I_{\rm ESR}(T)$ of Y_{0.99}Yb_{0.01}Pd₃ (which has similar $B_{\rm Res}$ and ΔB at 5K) we estimate that at least 60 % of the Yb³⁺ ions contribute to the ESR signal in YbRh₂Si₂ [12]. Therefore, the observed ESR indeed is a bulk property. This is an extraordinary result as in dense Kondo lattice systems the ESR of the Kondo ion itself has never been observed below the Kondo temperature $T_{\rm K}$.

For the *dilute* Kondo system <u>Au</u>: Yb, a Kondo ion (Yb³⁺) ESR was reported *above* $T_{\rm K} \approx 0.01$ mK [13]. There, the temperature dependent effective exchange coupling results in a $g(T) \sim \ln (T / \widetilde{T}_{\rm K})$ dependence. Such a single-ion Kondo scenario consistently describes the low-temperature behav-

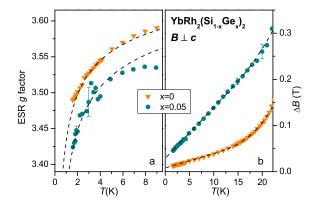


Fig. 2: Comparison of the temperature dependences of ESR line parameters at 9.4 GHz for the pure and Gedoped compound. (a) Dashed lines describe the data by a g-factor obtained from models valid above the Kondo temperature. (b) Dashed lines represent line width fits with a behavior as observed in conventional Yb-doped intermetallics (details: Refs. [1,8]).

ior of g(T) of all our investigated compounds of YbRh₂Si₂ as shown in the left frame in Fig. 2 for the pure ($\widetilde{T}_K = 20 \text{ mK [1]}$) and Ge doped compound $(T_K = 35 \text{ mK } [8])$. Taken as an effective spin-fluctuation (or Kondo) temperature, this value corresponds to a linewidth $\Delta B_{\rm K} = k_{\rm B} \tilde{T}_{\rm K}/\mu_{\rm B} \cong 30 \text{ mT}$ which is in pretty good agreement with the observed linewidth, see right frame of Fig. 2. The small value of T_K is consistent with the observation of very large unscreened $\mathrm{Yb^{3^+}}$ moments ($\mu_{\mathrm{eff}}\cong$ 1.4 μ_B) in the B = 0 static bulk susceptibility for T_N < T < 0.3 K [2]. We suggest that this large discrepancy to the three orders of magnitude larger value of $T_{\rm K}$ (derived from transport and thermodynamic properties [2, 3]) is related to the local nature of the QCP [5] in these compounds.

The nature of the relaxation mechanism of the Yb³⁺-spins is reflected by the linewidth ΔB . Its temperature dependence is shown in Figs. 2b and 3 for $B \perp c$ axis. The dashed lines describe the linewidth data as follows: In the region 1 K $\leq T \leq$ 12 K, $\Delta B(T)$ shows an increase linear in temperature which is a behavior typically found for a local moment relaxation in a metallic environment [14]. As shown in Fig. 2b the slope for the Ge-doped sample is larger than that for the undoped sample by about the same factor by which the residual linewidth $\Delta B_0 = \Delta B \ (T \rightarrow 0)$ is increased [8]. This points towards a common relaxation mechanism to which ΔB_0 and the linear term can be ascribed to. The same scaling behavior holds for the La-doped samples [9].

Above $T \cong 12$ K an exponential increase $\Delta B(T) \propto 1/(\exp(\Delta/T) - 1)$ becomes dominant. This is due to a relaxation via an excited energy level Δ above the ground state. The extracted values for Δ are considerably smaller than the first excited crystalline field levels in YbRh₂Si₂ and YbIr₂Si₂ (found by neutron scattering [15]).

At temperatures below 1 K we observed a deviation from the linear temperature behavior of $\Delta B(T)$ in YbRh₂Si₂. This deviation occurs at the crossover temperature boundary which separates Non-Fermi liquid (NFL) behavior from Landau Fermi liquid behavior in the thermodynamic and transport properties [2]. This crossover is indicated at slightly higher temperatures when using the ESR relaxation rates for a comparison with ²⁹Si NMR data [16], shown in the inset of Fig. 3. The nuclear spin relaxation rate $1/T_1$ contains the dynamical 4f related susceptibilities according to $(1/T_1T)_{4f} \propto \text{Im } \chi(\omega)_{4f} / (1/T_1T)_{4f} \sim \text{I$ ω; ($\hbarω / k_{\rm B}T \ll 1$). The quantity (Im $\chi/ω$)_{4f} ESR includes the temperature dependence of the ESR linewidth, resonance field, and intensity [1]. Both ESR and NMR results show a change of slope at temperatures which depend on the applied magnetic field. At fields B = 0.5 T and 2.42 T the saturation originates from a crossover from a NFL regime at elevated temperatures to a field-induced, low-temperature Landau Fermi liquid regime, for which $1/T_1T$ is T-independent [16]. At fields $B \le$

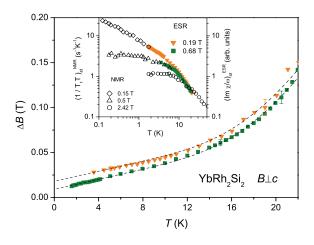


Fig. 3: Temperature dependence of the ESR linewidth ΔB at resonance fields $B_{Res}=0.19$ T (9.4 GHz, triangles) and 0.68 T (34.1 GHz, squares). Dashed lines fit the data by assuming a behavior observed in conventional Yb-doped intermetallics (details: Ref. [1]). Inset: comparison of spin-lattice relaxation data from ²⁹Si-NMR ([16], open symbols) with data derived from the ESR parameters (closed symbols, details: Ref. [1]).

0.19 T both, ESR and NMR data, do not show any saturation at low T which was explained with developing critical antiferromagnetic $(q\neq 0)$ spin fluctuations when approaching the Néel state [16].

In order to characterize the spatial dependence of the spin dynamics of the Yb³⁺ spin we investigated the angular dependence of the ESR relaxation rate $\Gamma(\varphi) = \omega_{\rm ESR} \Delta B(\varphi) / B_{\rm Res}(\varphi)$ in the temperature range 4.2 K - 12 K, see Fig. 4. The crystal was rotated as sketched in Fig. 4b with the microwave magnetic field b_0 being always perpendicular to the crystalline c-axis. When keeping φ fixed we found the relaxation rate to be independent on the orientation of the crystalline axes with respect to the microwave magnetic field. By variation of φ the temperature dependence of the line width as shown in Figs. 2b and 3 remains qualitatively unchanged. Quantitatively, a pronounced deviation from the $\Gamma(\varphi=90^{\circ})$ -value is visible for $\varphi \leq 30^{\circ}$. As shown in Figs. 4a and 4b this anisotropy can be attributed to the zero-temperature residual relaxation rate $\Gamma_0(\varphi)$, i.e., $\Gamma - \Gamma_0$ behaves spatially isotropic within our experimental accuracy.

The slope of the T-linear part of $\Delta B(T)$ corresponds to a slope $\partial \Gamma/\partial T$ in the T-linear part of the relaxation rate. The angular variation of $\partial \Gamma/\partial T$ (φ) is shown in Fig. 4a. $\partial \Gamma/\partial T$ (φ) appears to be isotropic within the error bars. Within a Fermi-liquid theory, $\partial \Gamma/\partial T \propto [N(E_{\rm F})J]^2$ [14]. The isotropic behavior at finite temperatures of the dynamic spin properties of the Kondo ion is consistent with a wave vector independent form of the spin susceptibility within the LC scenario of quantum criticality [5].

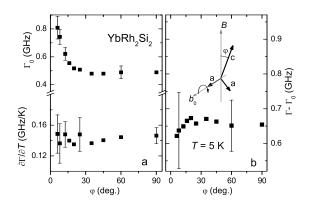


Fig. 4: Angular dependence of the relaxation rate $\Gamma = g\mu_B \Delta B/h$ for the ESR at 9.4 GHz. (a) Angular dependence of both the residual $\Gamma_0 = \Gamma(T=0 \text{ K})$ and the slope $\partial \Gamma/\partial T$ of the T-linear part of $\Gamma(T)$. (b) Angular dependence of the ESR relaxation corrected for the residual relaxation.

Summary and Outlook

Our ESR results on the dense Kondo-lattice systems YbRh₂Si₂ and YbIr₂Si₂ led to the central conclusion that local magnetic Yb3+ moments exist well below the characteristic spin fluctuation or Kondo temperature characterizing consistently the thermodynamic and transport properties at higher temperatures. The existence of a well behaved ESR line of Yb³⁺ at such low T indicates an almost complete lack of Kondo screening of the Yb³⁺ magnetic moments. Furthermore, from the field dependence of the ESR relaxation rate (see inset of Fig. 3) as well as from the analysis of the ESR intensity [11] we found evidence of dominating FM fluctuations in YbRh₂Si₂ above the critical field, consistent with ²⁹Si NMR results [16]. From our results it is obvious that a simple single-ion Kondo scenario fails to explain our observations. On the other hand, the localized moment scenario for heavyfermion QCPs implies a type of dynamical susceptibility which relates to local critical degrees of freedom coexisting with spatially extended ones [5]. Such a scenario appears to be strongly supported by our observation that an ESR signal due to local Yb3+ moments develops significantly below the ordinary Kondo temperature.

Future work will focus on extending the experimental parameters such that the transition between the non-Fermi liquid and the Landau Fermi-liquid regime is accessible for ESR experiments. Setups for measuring ESR at temperatures down to 0.3 K, with magnetic fields up to 17 T, and at pressures up to 2 GPa are presently under construction. Furthermore, from ESR investigations of Gd-doped YbRh₂Si₂ single crystals (which are under preparation at present) promising, additional results concerning the Kondo-ion spin dynamics can be expected. A preliminary theoretical approach has

been achieved recently and will be further developed in a future collaboration with Prof. B. I. Kochelaev *et al.* (Kazan State University, Russia).

References

- [1] J. Sichelschmidt et al., Phys. Rev. Lett. **91** (2003) 156401.
- [2] O. Trovarelli et al., Phys. Rev. Lett. 85 (2000) 626; P. Gegenwart et al., Phys. Rev. Lett. 89 (2002) 056402.
- [3] Z. Hossain et al., Phys. Rev. B **72** (2005) 094411.
- [4] J. Custers et al., Nature 424 (2003) 524.
- [5] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature **413** (2001) 804.
- [6] B. Elschner and A. Loidl in: "Handbook on the Physics and Chemistry of Rare Earths", Vol. 24, p.221, Ed. K.A. Gschneidner, Elsevier Science (1997).
- [7] H.-A. Krug von Nidda in "Relaxation Phenomena", p.112ff, Eds. W. Haase, S. Wrobel, Springer (2003).
- [8] J. Sichelschmidt et al., Physica B **359-361** (2005)
- [9] J. Wykhoff et al., to be published.
- [10] J. Sichelschmidt et al., to be published.
- [11] *J. Sichelschmidt et al.*, Proc. Nanores 2004 Kazan, (to be published in J. Supercond. (2006)).
- [12] J. Sichelschmidt et al., J. Mag. Magn. Mat. 272-276 (2004) 42.
- [13] K. Baberschke and E. Tsang, Phys. Rev. Lett. **45** (1980) 1512.
- [14] R. H. Taylor, Adv. Phys. 24 (1975) 1512.
- [15] O. Stockert et al., Physica B in press; A. Hiess et al., Physica B in press.
- [16] K. Ishida et al., Phys. Rev. Lett. **89** (2002) 107202.

¹ Kazan Physical Technical Institute, Kazan, Russian Federation

² Okayama University, Okayama, Japan

³ University of Augsburg, Augsburg, Germany