Topological Band Theory

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

Based on lectures and notes from Charles L. Kane
Topological Band Theory

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A central role of condensed matter physics → characterize phases of matter
Topological Band Theory

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A central role of condensed matter physics → characterize phases of matter

Phases like magnets and superconductors → spontaneous symmetry breaking
Topological Band Theory

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A central role of condensed matter physics → characterize phases of matter

Phases like magnets and superconductors → spontaneous symmetry breaking

Quantum Hall state → No symmetry breaking! The properties are consequences of the topological structure of the quantum state.
Topology vs. Integer Quantum Hall Effect
Topology vs. Integer Quantum Hall Effect

The Insulating State
atomic insulator

- Atomic energy levels
- E_g

The Integer Quantum Hall State
2D Cyclotron Motion, $\sigma_{xy} = e^2/h$

- Landau levels
- $E_g = h\omega_c$

$\Phi = h/e$
Topology vs. Integer Quantum Hall Effect

Quantum Hall Effect \rightarrow Energy gap, but not an insulator!

$E_{\text{gap}} = \hbar \omega_c$

Quantized Hall conductivity:

$J_y = \sigma_{xy} E_x$

$\sigma_{xy} = \frac{n e^2}{h}$

Integer accurate to 10^{-9}

Similarly, Topological Insulators \rightarrow Bulk energy gap, but conducting surface
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A sphere and a doughnut are distinguished by an integer topological invariant called the *genus*, g, which is essentially the number of holes.
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A sphere and a doughnut are distinguished by an integer topological invariant called the genus, g, which is essentially the number of holes.

$g = 0$

$g = 1$
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A sphere and a doughnut are distinguished by an integer topological invariant called the genus, g, which is essentially the number of holes. Since an integer cannot change smoothly, surfaces with different genus cannot be deformed into one another, and are said to be topologically distinct.
Topology

Topology is a branch of mathematics concerned with geometrical properties that are insensitive to smooth deformations.

A sphere and a doughnut are distinguished by an integer topological invariant called the \textit{genus}, \(g \), which is essentially the number of holes. Since an integer cannot change smoothly, surfaces with different genus cannot be deformed into one another, and are said to be topologically distinct. Surfaces that can be deformed into one another are topologically equivalent.
In band theory, insulators are equivalent if they can be changed into one another by slowly changing the Hamiltonian, such that the system always remains in the ground state.
Topology

In band theory, insulators are equivalent if they can be changed into one another by slowly changing the Hamiltonian, such that the system always remains in the ground state.

Such a process is possible if there is an energy gap E_G, which sets a scale for how slow the adiabatic process must be.
In band theory, insulators are equivalent if they can be changed into one another by slowly changing the Hamiltonian, such that the system always remains in the ground state.

Such a process is possible if there is an energy gap E_G, which sets a scale for how slow the adiabatic process must be.

Insulators are topologically equivalent if there exists an adiabatic path connecting them along which the energy gap remains finite.
In band theory, insulators are equivalent if they can be changed into one another by slowly changing the Hamiltonian, such that the system always remains in the ground state.

Such a process is possible if there is an energy gap E_G, which sets a scale for how slow the adiabatic process must be.

Insulators are topologically equivalent if there exists an adiabatic path connecting them along which the energy gap remains finite.

It then follows → connecting topologically inequivalent insulators necessarily involves a phase transition, in which the energy gap vanishes.
Let's look back at the tightbinding example, wherein we calculated topologically non-trivial surface states.

We will change the band structure (i.e. smooth deformation) and monitor if they fall in same “genus”

The fingerprint of this is the surface state that remains linear close to Γ.
Topologically equivalent phases

In last lecture → a tightbinding model on a square lattice with one s and three p orbitals

\[
H =
\begin{array}{|c|c|c|}
\hline
\epsilon p + pp\sigma (e^{i\pi xx} + e^{-i\pi xx}) & 0 & 0 \\
\hline
0 & \epsilon p + pp\sigma (e^{i\pi xy} + e^{-i\pi xy}) & 0 \\
\hline
0 & 0 & \epsilon p + pp\sigma (e^{i\pi xz} + e^{-i\pi xz}) \\
\hline
sp\sigma (-e^{i\pi xx} + e^{-i\pi xx}) & sp\sigma (-e^{i\pi xy} + e^{-i\pi xy}) & sp\sigma (-e^{i\pi xz} + e^{-i\pi xz}) \\
\hline
sp\sigma (e^{i\pi xx} - e^{-i\pi xx}) & sp\sigma (e^{i\pi xy} - e^{-i\pi xy}) & sp\sigma (e^{i\pi xz} - e^{-i\pi xz}) \\
\hline
\end{array}
\]
Topologically equivalent phases

In last lecture → a tightbinding model on a square lattice with one s and three p orbitals

\[H_{SOC} = \begin{pmatrix}
0 & \frac{i}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\
-\frac{i}{2} & 0 & 0 & 0 & 0 & 0 & -\frac{i}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{i}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{i}{2} & 0 & 0 \\
0 & 0 & \frac{i}{2} & 0 & 0 & -\frac{i}{2} & 0 & 0 \\
0 & 0 & -\frac{i}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \\
-\frac{1}{2} & \frac{i}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \]
Topologically equivalent phases

Bulk

Surface
Topologically equivalent phases

All these bulk band structures fall in the same "genus" → topologically equivalent
Topologically equivalent phases

Is there an example in real condensed matter, where many different topologically equivalent phases can be found?

Example: SmO
SmO is a semi-metal with a “warped” band gap.
SmO (001) surface
Lattice constant (Å)

Band bottom (eV)

Energy εₙ(k) [eV]

Sm 4f⁵/₂
Sm 5d
Sm 6s

Ef

Sm 6s at Γ
Sm 5d at X

Lattice constant (Å)
Band bottom (eV)

- E_F

Lattice constant (Å)

- 4.8
- 4.9
- 5
- 5.1
- 5.2
- 5.3
- 5.4
- 5.5
- 5.6
- 5.7

Energy, $\varepsilon_n(k)$ [eV]

- Sm 4f$^{5/2}$
- Sm 5d
- Sm 6s

Γ, X, W, K, Γ, L, W, U, X

Sm 6s at Γ
Sm 5d at X
Lattice constant (Å)

Band bottom (eV)

E_F

-2

-1

0

1

2

-2

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Lattice constant (Å)

Sm 6s at Γ

Sm 5d at X

Sm 4f 5/2

Sm 5d

Sm 6s
Band gap never closed, even though the band structure changes a lot → all these band structures of SmO are topologically equivalent (same genus)
SmO (001) surface

Energy $\epsilon_n(k)$ [eV]

Γ \bar{M} \bar{X}

(001)
Topological band theory vs. Integer Quantum Hall Effect

Application of magnetic field \(\rightarrow\) breaks “Time Reversal Symmetry” \(\rightarrow\) creation of conducting edge states.
Application of magnetic field \rightarrow breaks “Time Reversal Symmetry” \rightarrow creation of conducting edge states.

It was assumed therefore, special edge states only occur when “time reversal symmetry” is broken.
Topological band theory vs. Integer Quantum Hall Effect

Application of magnetic field → breaks “Time Reversal Symmetry” → creation of conducting edge states.

It was assumed therefore, special edge states only occur when “time reversal symmetry” is broken.

But, in band theory, which has both “time reversal” and “inversion” → one can still get edge states → example of Graphene
Graphene is an allotrope of carbon, which form two-dimensional hexagonal lattice.
Graphene is an allotrope of carbon, which form two-dimensional hexagonal lattice.

When doing band structure calculations requires periodic boundary conditions, we stack up these two-dimensional sheets far apart from each other, so we are essentially only capturing the physics in the sheets.
Graphene

Graphene is an allotrope of carbon, which form two-dimensional hexagonal lattice.

When doing band structure calculations requires periodic boundary conditions we stack up these two-dimensional sheets far apart from each other, so we are essentially only capturing the physics in the sheets.

Time reversal symmetry \(d_z(k) = d_z(-k) \)

Inversion symmetry \(d_z(k) = -d_z(-k) \)
Graphene is an allotrope of carbon, which form two-dimensional hexagonal lattice.

When doing band structure calculations requires periodic boundary conditions we stack up these two-dimensional sheets far apart from each other, so we are essentially only capturing the physics in the sheets.

Time reversal symmetry \(d_z(k) = d_z(-k) \)
Inversion symmetry \(d_z(k) = -d_z(-k) \)

Therefore, Hamiltonian can be written as:

\[
\begin{align*}
 d_x(k) &= -t \sum_{p=1}^{3} \cos k \cdot a_p, \\
 d_y(k) &= -t \sum_{p=1}^{3} \sin k \cdot a_p, \\
 d_z(k) &= 0.
\end{align*}
\]
Point zeroes in \((d_x, d_y)\) due to inversion and time reversal symmetry.