Structure and Bonding of the Mixed-Valent Platinum Trihalides, PtCl₃ and PtBr₃

Hans Georg von Schnering^{a,*}, Jen-Hui Chang^a, Maria Freiberg^a, Karl Peters^a, Eva-Maria Peters^a, Alim Ormeci^b, Liane Schröder^b, Gerhard Thiele^{c,*}, Caroline Röhr^c

^a Stuttgart, Max-Planck-Institut für Festkörperforschung

^b Dresden, Max-Planck-Institut für Chemische Physik fester Stoffe

^c Freiburg, Institut für Anorganische und Analytische Chemie der Albert-Ludwigs-Universität

Received August 11th, 2003.

Professor Klaus-Jürgen Range zum 65. Geburtstag gewidmet

Abstract. The isotypical crystal structures of the mixed valent trihalides PtCl₃ and PtBr₃ were redetermined by single crystal methods (space group $R\bar{3}$; trigonal setting; PtCl₃: a = 21.213 Å, c = 8.600 Å, c/a = 0.4054; Z = 36; 1719 hkl; R = 0.035; PtBr₃: a = 22.318 Å, c = 9.034 Å; c/a = 0.4048; Z = 36; 1606 hkl; R = 0.027). A cubic closest packing of X⁻ anions forms the basis of an optimized arrangement of cuboctahedrally [Pt₆X₁₂] cluster molecules with Pt^{II} and enantiomers of helical chains of edge-condensed [PtX₂X_{4/2}] octahedra with Pt^{IV} in *cis*- Δ - and *cis*- Λ -configuration, respectively. The bond lengths vary with the function of the X⁻ ligands ($\bar{d}(Pt^{II}-X) = 2.315$ and 2.445 Å; $\bar{d}(Pt^{II}-Pt^{II}) = 3.336$

and 3.492 Å; d(Pt^{IV}–X) = 2.286 – 2.417 Å and 2.437 – 2.563 Å). The Pt^{II} atoms are shifted outwards the X₁₂ cuboctahedra by 0.045 Å and 0.024 Å, respectively. The symmetry governed Periodic Nodal Surface, PNS, perfectly separates the regions of different valencies. Quantum chemical calculations exclude the possible additional interactions between Pt^{II} and one of the *exo*-ligands of Pt^{IV}.

Keywords: Platinum; Platinum trihalides; Crystal structure; Electronic structure; Periodic nodal surface

Struktur und Bindung der gemischt-valenten Platin-Trihalogenide PtCl₃ und PtBr₃

Inhaltsübersicht. Die isotypen Kristallstrukturen der gemischt-valenten Trihalogenide PtCl₃ und PtBr₃ wurden an Einkristallen neu bestimmt. (Raumgruppe $R\bar{3}$; trigonale Aufstellung; PtCl₃: a =21.213 Å, c = 8.600 Å, c/a = 0.4054; Z = 36; 1719 hkl; R = 0.035; PtBr₃: a = 22.318 Å, c = 9.034 Å; c/a = 0.4048; Z = 36; 1606 hkl; R = 0.027). Eine kubische Dichtestpackung der X⁻-Anionen bildet die Basis einer optimierten Anordnung von kuboktaedrischen [Pt₆X₁₂]-Clustermolekülen mit Pt^{II} und enantiomeren helikalen Ketten kantenkondensierter [PtX₂X_{4/2}]-Oktaeder mit Pt^{IV} in *cis*- Δ - bzw. *cis*- Λ -Konfiguration. Die Bindungslängen variieren mit der Funktion der X⁻-Liganden ($\bar{d}(Pt^{II}-X) = 2.315$ bzw. 2.445 Å; $\bar{d}(Pt^{II}-Pt^{II}) = 3.336$ bzw. 3.492 Å; $d(Pt^{IV}-X) = 2.286 - 2.417$ Å bzw. 2.437 - 2.563 Å). Die Pt^{II}-Atome liegen um 0.045 Å bzw. 0.024 Å außerhalb der X₁₂-Kuboktaeder. Die symmetrie-bestimmte Periodische Knotenfläche, PNS, trennt perfekt die beiden Regionen unterschiedlicher Valenzen voneinander. Quantenchemische Rechnungen schließen mögliche bindende Wechselwirkungen aus, die zwischen Pt^{II} und einem der *exo*-Liganden von Pt^{IV} erwartet werden konnten.

1 Introduction

Platinum halides PtX_2 , PtX_3 and PtX_4 (X = Cl, Br) were synthesized and described by *Wöhler* et al. about 80 years

* Prof. Dr. Dr. h. c. H.G. von Schnering Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1 D-70569 Stuttgart/Germany

* Prof. Dr. G. Thiele
Institut f. Anorg. u. Analyt. Chemie
Albert-Ludwigs-Universität
Albertstraße 21
D-79104 Freiburg/Germany
e-mail: gerhard.thiele@ac.uni-freiburg.de

ago [1-3]. However, single crystals of the dark-red PtBr₃ and the dark-green PtCl₃ were grown by *Thiele* and *Woditsch* [4] and by *Wiese* et al. [5] for the first time in 1969 and 1970, respectively. The trihalides are isotypically and represent the first structural proof of the existence of distinct mixed-valent states with platinum (Pt^{II} / Pt^{IV}) [4, 5]. The former structure determinations based on X-ray film data [4] and 2-circle diffractometer (Philips PAILRED) data [5, 6], which don't allow a more sophisticated analysis of the structural arrangement. Furthermore, the mean bond lengths Pt^{IV}-Cl^a and Pt^{IV}-Cl^b listed in [5] are exchanged by mistake. A redetermination of both structures seems to be necessary to obtain reliable details with respect to possible transitions into the Pt^{III} state as observed with PtI₃ [7].

The results of new X-ray structure analyses and of quantum chemical calculations are presented here. Moreover, it

Formula; Mole mass	PtCl ₃ ; 301.438 amu	PtBr ₃ ; 434.792 amu
Crystal	dark green trigonal needle; $0.02 \times 0.02 \times 0.10$ mm	dark red trigonal needle; $0.01 \times 0.01 \times 0.08$ mm
Space group	<i>R</i> 3(No. 148)	<i>R</i> 3(No. 148)
Structure type; Pearson code	PtBr ₃ ; <i>hR</i> 48	PtBr ₃ ; <i>hR</i> 48
Trigonal unit cell	a = 21.213(6) Å; $c = 8.600(3)$ Å;	a = 22.318(9) Å; $c = 9.034(3)$ Å;
	$c/a = 0.4054; V = 3351.5(3) \text{ Å}^3; Z = 36$	$c/a = 0.4048; V = 3897(2) \text{ Å}^3; Z = 36$
Rhombohedral unit cell	$a = 12.578(4)$ Å; $\alpha = 114.97(1)^{\circ}$	$a = 13.233(4)$ Å; $\alpha = 114.980(2)^{\circ}$
	$V = 1117.2(1) \text{ Å}^3; Z = 12$	$V = 1299.2(7) \text{ Å}^3; Z = 12$
d _X ; F(000) _{hex}	$5.377 \text{ g} \cdot \text{cm}^{-3}$; 4644	$6.670 \text{ g} \cdot \text{cm}^{-3}$; 6588
Measurement	STOE STADI 4 Four circle diffractometer, Mo-K α ,	Diffractometer STOE IPDS-II, Imaging plate area detector,
	$\lambda = 0.71073$ Å, scintillation counter, ω -mode, $3^{\circ} \le 2\theta \le 55^{\circ}$.	Mo-K α , $\lambda = 0.71073$ Å, $6^{\circ} \le 2\theta \le 61^{\circ}$.
	Empirical absorption correction (γ -scan); $\mu = 41.53 \text{ mm}^{-1}$	Numerical absorption correction, program SHAPE,
		Crystal Optimisation for Numerical Absorption Correction,
		Fa. STOE, Darmstadt.; $\mu = 59.86 \text{ mm}^{-1}$
Refinement	Program SHELX97 [13]; Full-matrix least squares	Program SHELX97 [13]; Full-matrix least squares
	refinement on F ²	refinement on F ²
N(hkl) meas.; unique	2091; 1719 [R(int.) = 0.024]	2643; 1606 [R(int.) = 0.064]
N'(hkl) ($F^2 > 3 \sigma(F^2)$)	1679; 74 variable parameters	1606; 74 variable parameters
$R1(F); R_w(F^2)$	0.035; 0.090	0.027; 0.057

Table 1 Crystallographic data for PtCl₃ and PtBr₃^{a)}.

Furhter details may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Zusammenarbeit, D-76344 Eggenstein-Leopoldshafen, on quoting the depository numbers CSD-413423 (PtCl₃) and CSD-413424 (PtBr₃), the name of the authors and this journal.

Table 2 PtCl₃: Positional and displacement parameters U_{ij} / pm² for the trigonal obverse setting (*above*; atoms at 18*f*) and for the rhombohedral setting (*below*; atoms at 6*f*). Displacement factor: exp[$-2\pi^2(U_{11}h^2a^{*2}+...+2U_{23}klb^*c^*)$]. Standard deviations are given in parentheses.

Atom	х	у	Z	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃	
Pt1 0.00606(2)		0.09352(2)	0.15895(4)	159(2)	128(2)	184(2)	77(1)	-1(1)	-24(1)	
Pt2	0.02752(2)	0.29989(2)	0.50979(4)	116(3)	109(2)	128(2)	58(1)	1(1)	-2(1)	
Cl11	0.0975(2)	0.1776(2)	-0.0004(3)	224(11)	127(10)	274(14)	58(9)	32(9)	-1(9)	
Cl12	0.0916(2)	0.0857(1)	0.3118(3)	236(11)	207(11)	190(11)	118(9)	-63(9)	-42(9)	
Cl21	0.1153(1)	0.3854(1)	0.3428(3)	102(9)	190(10)	158(11)	50(8)	9(7)	33(8)	
Cl22	0.0313(1)	0.3930(1)	0.6781(3)	207(10)	107(10)	158(13)	68(8)	38(8)	-3(8)	
Cl23	0.1158(1)	0.2976(2)	0.6580(3)	195(12)	299(12)	261(14)	153(10)	-52(9)	34(10)	
C124	0.0202(1)	0.2061(1)	0.3604(3)	258(12)	172(10)	231(11)	126(9)	-22(9)	-65(9)	
Pt1	0.16501(4)	0.24641(4)	0.06543(4)	178(2)	157(2)	192(2)	127(2)	145(2)	141(2)	
Pt2	0.53731(4)	0.78216(4)	0.20990(4)	127(2)	122(2)	126(2)	94(2)	96(2)	96(2)	
Cl11	0.0972(4)	0.0797(4)	-0.1780(4)	289(14)	243(13)	247(13)	195(12)	226(12)	200(12)	
Cl12	0.4033(4)	0.3059(4)	0.2261(4)	150(10)	210(11)	225(11)	119(10)	126(10)	164(10)	
Cl21	0.4581(3)	0.6129(3)	-0.0427(3)	155(10)	183(11)	138(10)	133(10)	111(10)	101(10)	
Cl22	0.7093(3)	0.0398(3)	0.2851(3)	196(12)	130(11)	151(12)	103(11)	133(11)	108(11)	
Cl23	0.7738(4)	0.8398(4)	0.3605(4)	209(12)	314(15)	242(13)	220(12)	154(11)	208(12)	
Cl24	0.3806(4)	0.5463(4)	0.1542(4)	219(11)	188(11)	270(12)	141(10)	183(10)	189(10)	

will be shown that the appropriate symmetry governed Periodic Nodal Surface, PNS, separates the regions of Pt^{II} and Pt^{IV} in a natural way.

2 Synthesis and Properties

Since 1970 the preparation, the thermal decomposition and the growth of platinum halide crystals from the vapor phase was studied by several groups intensely [4, 5, 8–12]. The reaction of platinum metal with halogens is strongly inhibited by the formation of surface layers [10]. Therefore, the conventional method for the preparation of the tetrahalides is the thermal decomposition of commercial products of hexahalogenoplatinum(IV) acids H₂PtX₆·xH₂O in a stream of N₂/Cl₂ resp. N₂/Br₂ (T \approx 500 K, 2–3 hours, quartz glass tube, corundum crucible) [9]. Powder samples of the trihalides are obtained by thermal decomposition of the tetrahalides in closed quartz glass ampoules with presence of halogens (Pressure X₂ \geq 1 bar, T \approx 675 K) [9]. When PtBr₄ was heated in a quartz ampoule for 5 days in a 900 K / 520 K temperature gradient, black needle-shaped single crystals of PtBr₄ were found at the 520 K zone, in contact with dark green trigonal needles of PtBr₃ crystals in the 650 K zone [8]. Single crystals of the homogeneous trihalides PtCl₃ and PtBr₃ can be prepared by transport methods [4, 5, 12], in particular with Al₂X₃ as a transporting agent [10]. Noticeable is the brass-colored reflectivity of the trigonal prism faces of PtX₃ crystals. PtCl₃ is diamagnetic $(-66 \cdot 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$ [5]) and PtBr₃ shows a very low paramagnetism $(150 \cdot 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$ [4]).

3 Structure Determination

The crystallographic data are collected in Table 1, Table 2 and Table 3. We take the former parameters of $PtBr_3$ [4] and $PtCl_3$ [5, 6] as starting values.

Atom	х	у	Z	U11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃	
Pt1	0.00705(3)	0.09351(4)	0.1582(1)	160(3)	130(3)	110(9)	76(2)	-7(3)		
Pt2	0.02723(3)	0.29961(4)	0.5076(1)	126(3)	114(3)	85(7)	63(2)	5(3)	-2(3)	
Br11	0.0992(1)	0.1783(1)	-0.0009(2)	206(9)	144(8)	191(21)	60(7)	9(9)	-5(9)	
Br12	0.0927(1)	0.0858(1)	0.3129(3)	215(9)	209(9)	141(25)	105(8)	-52(10)	-35(9)	
Br21	0.1166(1)	0.3855(1)	0.3419(3)	119(8)	172(9)	162(18)	52(7)	2(9)	53(9)	
Br22	0.0310(1)	0.3943(1)	0.6743(3)	202(8)	109(7)	152(19)	52(7)	41(10)	-12(9)	
Br23	0.1173(1)	0.2978(1)	0.6569(3)	225(9)	274(11)	228(20)	160(8)	-25(11)	35(10)	
Br24	0.0201(1)	0.2035(1)	0.3579(3)	274(10)	178(9)	145(21)	134(8)	14(9)	-55(9)	
Pt1	0.1653(1)	0.2447(1)	0.0647(1)	114(7)	106(7)	128(7)	68(7)	82(7)	83(7)	
Pt2	0.5348(1)	0.7800(1)	0.2080(1)	96(6)	84(6)	92(6)	57(6)	61(6)	58(6)	
Br11	0.0983(3)	0.0782(3)	-0.1793(3)	200(18)	187(17)	186(18)	129(17)	151(17)	138(17)	
Br12	0.4056(3)	0.3060(3)	0.2271(3)	114(20)	166(20)	180(21)	82(20)	90(20)	117(20)	
Br21	0.4585(3)	0.6107(3)	-0.0436(3)	156(16)	206(17)	123(15)	141(15)	104(14)	111(15)	
Br22	0.7053(3)	0.0377(3)	0.2800(3)	192(16)	130(16)	145(15)	97(15)	131(15)	99(15)	
Br23	0.7742(3)	0.8375(3)	0.3591(3)	208(18)	265(17)	209(17)	189(17)	135(17)	176(17)	
Br24	0.3780(3)	0.5413(3)	0.1545(3)	178(18)	99(17)	193(19)	73(17)	121(18)	106(18)	

Table 3 PtBr₃: Positional and displacement parameters U_{ij}/pm^2 for the trigonal obverse setting (*above*; atoms at 18*f*) and for the rhombohedral setting (*below*; atoms at 6*f*). Displacement factor: $exp[-2\pi^2(U_{11}h^2a^{*2}+...+2U_{23}klb^*c^*)]$. Standard deviations are given in parentheses.

4 Calculation of Periodic Nodal Surfaces, PNS

The Periodic Nodal Surfaces, PNS, are structure invariant space partitioners, solely determined by symmetry [14]. The calculation as nodes of simple Fourier series and the use of PNS to analyze the generalized organization of crystal structures is described manifold [15-25]. The symmetry of PtCl₃ and PtBr₃ is $R\bar{3}$ and the axial ratio amounts c/a =0.405 (trigonal setting). This small cla ratio shifts the reciprocal lattice point (110) closest to the origin, followed by (101) with the same multiplicity (n = 6). We take |S(110)| = $|\mathbf{S}(101)| = 1$ and $\alpha(110) = \alpha(101) = 0$ as Fourier coefficients, for simplicity. These amplitudes |S| and phase angles α are identical for the space groups $R\overline{3}$ and $R\overline{3}m$ and, therefore, the generating and resulting symmetry is the same. The squares of the reciprocal lengths are in the ratio $[\sin^2\theta(110) / \sin^2\theta(101)] \approx 0.5$, which will be used as decay factor φ (see Equ. (1)). The appropriate PNS will now be calculated according to $R\bar{3}m < (110)_{1}^{0}, (101)_{1}^{0} > R\bar{3}m$ [14] which includes the symmetry equivalent coefficients (110), $(\bar{2}10)$, $(1\bar{2}0)$ and (101), $(\bar{1}11)$, $(0\bar{1}1)$, respectively. The rearrangement yields in (cX = $\cos 2\pi x$ etc.):

$$\begin{aligned} [c(X+Y) + c(-2X+Y) + c(X-2Y)] + \\ \phi \cdot [c(X+Z) + c(-X+Y+Z) + c(-Y+Z)] &= 0 \end{aligned} \tag{1}$$

with $\varphi = 0.5$ (see above).

Fig. 1 shows the PNS. It is easily to realize that the first part of Equ. (1) results in a hexagonal packing of cylinders with $R_{cyl} = 0.1904 \cdot a_{hex}$. The second part modulates the cylinders along c_{hex} . The space will be divided into two different labyrinth types, namely around the lattice complex *R*2z [26] in the cylinders and around the two equivalent lattice complexes $(M + 00^{1}/_{2}M)$ outside the cylinders. In the rhombohedral setting the lattice complexes are *P*2xxx and $(J + 1/_{2}^{1}/_{2}^{1}/_{2}J)$, which immediately show the relations to the non-isomorphic supergroup $Im\bar{3}m$ with the lattice complexes *I* and *J**.

Fig. 1 Periodic Nodal Surface PNS ($P2xxx \wedge J + \frac{1}{2} \frac{1}{2} \frac{1}{2} J$), which divides the space into two different labyrinths. The modulated cylinders envelope the lattice complex R2z (or P2xxx) [26]. The larger labyrinth contains the two lattice complexes M and $00^{1} \frac{2}{2} M$ (or $J + \frac{1}{2} \frac{1}{2} \frac{1}{2} J$).

Again, we would like to draw the reader's attention to the studies of *Andersson* et al. [27] about the representation of such surfaces in exponential scale. Finally, *Andersson* and *Jacobs* [28–30] have discovered relations of general importance in the mathematics of continuum, which show surprising analogies between mathematical and chemical structures.

5 Quantum Mechanical Calculations

We used the tight-binding linear muffin-tin orbitals (TB-LMTO) method within the atomic-sphere approximation (ASA) [31, 32] to perform first-principles electronic structure calculations on PtCl₃ and PtBr₃. The calculations were scalar-relativistic and the combined correction term was included. Local density approximation (LDA) to the density functional theory [33] was utilized through the exchangecorrelation potential due to von Barth and Hedin [34]. The valence states are chosen as follows: Cl: 3p, 4s, 3d (last two are downfolded [35]); Br: 4p, 5s, 4d (last two downfolded); Pt: 6s, 6p, 5d, 5f (last one downfolded). Since the crystal structure is quite an open one, cf. the packing ratio is about 25 %, interstitial (empty) spheres had to be inserted for a proper representation of charge density in the whole unit cell. The positions and radii of these spheres were determined by an automatic algorithm [32]. Brillouin zone (BZ) integrations were done by the tetrahedron method [36]; 117 tetrahedra were used in the irreducible BZ. In order to elucidate the bonding properties we generated the contour plots of the charge density and the Electron Localization Function (ELF) [37].

6 Results and Discussion

6.1 Crystal Structure

The mixed-valent PtCl₃ and PtBr₃ form the PtBr₃ type of structure [4] which represents a well optimized arrangement of Pt₆X₁₂ cluster molecules with Pt^{II} (X = Cl, Br) and helical chains of edge-condensed PtX₆ octahedra $\frac{1}{\alpha}$ [PtX₂X_{4/2}] with Pt^{IV}, forming two enantiomeres (3₁, 3₂ screws). The chirality is implanted in the *cis*- Δ -configuration and the *cis*- Λ -configuration of the condensed octahedra, respectively. The common edges act formally as η^2 -chelate ligands (Fig. 2). One type forms the helices around the 3₁ screw axes and the other type goes around the 3₂ screw axes. This arrangement is quite different from the chains in PtI₄ [38] and PtBr₄ [8] where the two configurations alternate by glide plane operations. The volumes of PtCl₃ and PtBr₃ are slightly smaller than the mean volumes of PtX₂ and PtX₄ (0.99 and 0.97).

The 108 X atoms per trigonal unit cell form the pattern of a cubic closest packing. Each of the three layers parallel (001) at z = 0, 1/3, 2/3 (±0.02) contains 36 X atoms and the defect \Box in the Pt₆X₁₂ cluster center (Fig. 3), corresponding with the 36 nodes (without \Box) of a 3⁴·6 + 3⁶ (6:30) net and with 37 nodes (including \Box) of a uniform 3⁶ net, respectively. The edge length of a homogeneous 3⁶ net is a' = $a_{hex}(37)^{-1/2}$ and, therefore, the positional parameters at z = 0 will be x, y = n/37 (n = integer). With respect to the rhombohedral symmetry of the trigonal structure the parameters of Table 2 and Table 3 have to be compared

Fig. 2 The $Pt_0^{II}X_{12}$ cluster molecule (*above*) and one of the enantiomeric helices of edge-condensed $\frac{1}{\infty}[Pt^{IV}X_2X_{4/2}]$ octahedra in *cis*- Δ -configuration (*below*). The atomic labeling and the Pt-X bond lengths d/Å are indicated (Table 4). The dotted lines show the short van der Waals contacts which result from the formation of the helix. (left: X = Cl; right: X = Br).

with multiples x, y = m/111 (m = integer): X11 (12; 21), X12 (11; 10), X21 (13; 43), X22 (4; 44), X23 (13; 32), X24 (2; 22). The small distortions of the ideal 3⁶ net (Fig. 3) results from contractions of the Pt₆X₁₂ cluster and of the PtX₄-screws as well as from different functions of the halide ligands. The axial ratio of the ideal 3⁶ net (c/a' = 2.466) shows that the deviation of a cubic closest packing is very small ($\sqrt{6} = 2.4495$).

The structure invariant Periodic Nodal Surface PNS $(P2xxx \wedge J + {}^{1}/{}_{2}{}^{1}/{}_{2}J)$ separates perfectly the dihalide regions from the tetrahalide regions of the mixed-valent trihalide structures (Fig. 4). There is an interesting relation between the structures of PtCl₃ and β -PtCl₂ (Pt₆Cl₁₂) [39]. Both base on cubic closest packed anion arrays with very similar trigonal c-axes (8.60 Å; 8.66 Å) but very different trigonal a-axes. Each anion layer contains per unit cell 13 X positions in β -PtCl₂ but 37 X positions in PtCl₃.

Fig. 3 View of the PtCl₃ (PtBr₃) structure down the trigonal caxis (*above*) and the 3⁶ net of 37 nodes in the plane at $z = 0 \pm 0.02$ (36 X + 1 \Box) (*below*). The ideal 3⁶ net with the positions x, y = n/ 37 is outlined. The real X positions are shown by open circles. Shaded areas belong to atoms X11 and X12 forming the Pt₆X₁₂ cluster. It is seen that the helices of condensed octahedra are threaded through a formerly body-centered cubic arrangement of Pt₆X₁₂ clusters (see Text).

results in a nearly perfect body centered cubic structure of $[Pt_6Cl_{12}]$ clusters [39], where the trigonal c-axis represents half of the cubic space diagonal. This direction is characterized by columns of clusters separated by trigonal X₆ antiprisms. These columns are unchanged present in PtCl₃ (Fig. 4) but now separated by the PtCl₄ spirals threaded through the trigonal basis. It is a nice idea to think that PtCl₃ is formed from PtCl₂ by diffusion of PtCl₄ chains through the expanding (001) plane along the c-axis.

6.2 Molecular Structure

Important bond lengths and interatomic distances are collected in Table 4. The shape of the $[Pt_6Cl_{12}^i]$ cluster of Pt^{II} is almost unchanged with respect to the dichloride cluster [39], including the small trigonal stretching. The mean bond lengths are $\bar{d}(Pt^{II}-Cl^i) = 2.315$ Å and $\bar{d}(Pt^{II}-Br^i) =$ 2.445 Å. The mean (nonbonding) intra-cluster $Pt^{II}-Pt^{II}$ distances are 3.336 Å and 3.492 Å, respectively. Together with the empty cluster center \Box , the X_{12}^i cuboctahedra form nuclei of cubic closest packings with $\bar{d}(Cl^i-Cl^i) = 3.273$ Å and $\bar{d}(Br^i - Br^i) = 3.458$ Å. These distances are substantial shorter than derived from the 'ideal' unit cell packings $(a(37)^{-1/2} = 3.487$ Å and 3.669 Å; see above). The differences are compensated by the larger van der Waals distances to the enveloping neighbor units (3.68 Å and 3.85 Å). The Pt^{II} atoms are shifted outwards of the clusters by 0.045 Å and 0.024 Å, respectively. These values correspond with those of the hexameric dihalides [39] and, they indicate that no additional interactions may be present with the larger distant *exo*-X24 ligands of Pt^{IV} (2.842 Å and 2.940 Å; Table 4; see below).

The distortions in the octahedral PtIV coordination mainly result from four effects: (i) the different functions of the single-bonded X^e exo-ligands and the bridging X^b ligands (Fig. 2, Table 4); (ii) the cis-configuration of the two X^e ligands; (iii) the internal tension in the center of the helices; (iv) relatively short intermolecular distances between neighboring helices (Fig. 3). Therefore, the ratio $\overline{d}(Pt^{IV}-X) / (\overline{d}(Pt^{II}-X) = 1.12-1.17)$ is somewhat larger than in the pairs PtX_6^{2-}/PtX_4^{2-} . The bond lengths of the single-bonded Xe exo-ligands correspond with the covalent radii sums ($\bar{d}(Pt^{IV}-Cl^e) = 2.297 \text{ Å} \triangleq 2.29 \text{ Å}$ and $(\bar{d}(Pt^{IV}-Br^e) = 2.456 \text{ \AA} \triangleq 2.44 \text{ \AA})$, but the twofold bonded X^b bridging ligands are closer bonded as expected for Pauling Bond Order PBO = 1/2 (\bar{d} (Pt^{IV}-Cl^b) = 2.364 Å < 2.47 Å and $\bar{d}(Pt^{IV}-Br^{b}) = 2.504 \text{ Å} < 2.62 \text{ Å})$. Furthermore, the lengths of the two exo-bonds as well as the two types of Pt^{IV}-X^b bonds are different. This demonstrates together with the irregular intra-polyhedral X-X contacts the substantial internal tension of the helices. Helices of regular edge-condensed octahedra yields in intra-octahedral and inter-octahedral X-X distances of the same lengths. In the real structure these two types have to act as intramolecular ones (strongly influenced by the Pt-X bonds) and as intermolecular ones of the van der Waals type (dotted lines in Fig. 2). To realize this, the central part of the helix became irregular with respect to all interatomic distances (X22 atoms) including the shift of the exo-X24 atoms from PtIV toward Pt^{II}.

An analysis of the deviations of the real structure from an idealized c.c.p. anion pattern shows (Fig. 3, Fig. 4):

(1) One starts with a c.c.p. X-array with $c/a' = \sqrt{6}$ and contracts the [Pt₆Xⁱ₁₂] cluster and the [PtX₂X_{4/2}] octahedra to fit the observed ratio $\bar{d}(X-X)_{intra} / \bar{d}(X-X)_{inter} = 0.89$.

(2) It is seen that non-acceptable $(X-X)_{inter}$ distances occur in the helices (X22 contacts; see above) and also between adjacent helices.

(3) To overcome the intra-helical ones, the helices has to be stretched and, for the intra-helical ones the *cis*- Δ - and *cis*- Λ -helices has to be shifted along [001] *alternating* by \pm 0.08 Å and \pm 0.07 Å, respectively (see z(Pt2) in Table 2 and Table 3). Both effects are seen in the real structures. In that way the shortest *inter*-molecular X-X distances will be expanded from 3.44 Å to 3.58 Å (PtCl₃) and from 3.52 Å to 3.64 Å (PtBr₃).

(4) In the idealized $PtCl_3$ structure according to (2), the above discussed Pt^{II} -Cl24 distance is *shorter* (2.77 Å) than

Fig. 4 The PNS ($P2xxx \wedge J + \frac{1}{2}l_2l_2J$) separates perfectly the region of $Pt_6^{II}X_{12}$ clusters from the region of $[Pt^{IV}X_2X_{4/2}]$ helices. The helices climb along the modulations of three neighboring cylinders and extend the single-bonded *exo*-ligands X24 toward the waists (see text).

Table 4 Selected interatomic distances d/Å (Standard deviation); n = multiplicity per atom. i = inner ligand; b = bridging ligand; e = exo-ligand

Atoms	[Pt)	X ⁱ ₁₂]	clı n	uster; Pt(I X = Cl	$\mathbf{I})\\\mathbf{X} = \mathbf{B}\mathbf{r}$	Ator	ms		[H n	$PtX_{4/2}^{6}X_{2}^{e}] h$ $X = Cl$	$\begin{array}{l} \text{nelix; Pt(IV)} \\ \mathbf{X} = \mathbf{Br} \end{array}$) function	Atoms	n	X- X distances intramolecular	intermolecular	n
Pt1	- X1 - X1 - X1 - X1 - X1 - X2 - Pt1 - Pt1	11 12 12 24 1 1	1 1 1 1 2 2	2.316(3) 2.316(3) 2.312(3) 2.314(3) 2.842(3) 3.330(1) 3.342(1)	2.445(2) 2.447(2) 2.443(2) 2.445(2) 2.940(3) 3.487(2) 3.496(2)	Pt2 Pt2	 	X21 X21 X22 X22 X23 X24 Pt2	1 1 1 1 1 1 2	2.329(2) 2.333(2) 2.376(2) 2.417(2) 2.286(3) 2.308(3) 3.463(1)	2.464(2) 2.474(2) 2.512(3) 2.563(3) 2.437(2) 2.474(2) 3.640(1)	<pre>} peripheral X^b central X^b exo X^e</pre>	$\begin{array}{l} Cl^i - Cl^i \\ Br^i - Br^i \\ Cl^b - Cl \\ Br^b - Br \\ Cl^e - Cl \\ Br^e - Br \\ \Box - X^i \end{array}$	4 4 7 4 4 12	3.261 - 3.283 3.450 - 3.468 3.218 - 3.525 3.436 - 3.644 3.240 - 3.319 3.445 - 3.539 3.273 (Cl); 3.458 (Br)	$\begin{array}{r} 3.556 & - & 3.810 \\ 3.715 & - & 3.977 \\ 3.581 & - & 3.805 \\ 3.644 & - & 3.953 \\ 3.524 & - & 3.810 \\ 3.644 & - & 3.977 \end{array}$	7 7 5 8 8

in the real structure (2.842 Å), which may also be taken as an argument against additional bonding interaction (see below).

6.3 Quantum Chemical Results

In the Pt_6Cl_{12} structure (β -PtCl₂) empty trigonal Cl₆ prisms cover the square-planar PtCl₄ fragments of the cluster to give space for the extended (antibonding) electron clouds of Pt^{II} [39]. Now, in the structures of PtCl₃ and PtBr₃ this space is 'closed' by the X24 atoms, even if the Pt^{II}-X24 distances are very large (2.842 Å and 2.940 Å). Nevertheless, these distances may correspond with bond orders of about 0.15. Furthermore, the X24 *exo*-ligands show weaker $Pt^{IV}-X^e$ bonds than the X23 *exo*-ligands (Table 4), which also may indicate weak additional $Pt^{II}-X24$ interactions. On the other hand, the topological analysis has shown (see above) that the change in the $Pt^{IV}-X^e$ bonds primarily results from sterical reasons.

Indeed, the quantum chemical calculations give no indication of significant bonding interactions. The most important ELF section of the $[Pt_6Cl_{12}]$ clusters is shown in Fig. 5.

This section includes the cluster center, two Pt^{II} atoms (Pt1), the inner ligand X12 and the surrounding X24 li-

Fig. 5 Section of the Electron Localisation Function, ELF, through the Pt_6X_{12} clusters. The plane is defined by the empty cluster center \Box at x = y = 0 and by the two Pt1 atoms (x horizontal; y vertical). The ELF-isolines are equidistant on an arbitrary scale.

gands of Pt^{IV} (Pt2) (X12 and X24 are not exactly in the Pt1– \Box –Pt1 plane). It is seen that the extended electron cloud of Pt^{II} along the x, y-axes is not as large as in the Pt₆Cl₁₂ single molecule [39], but is still present. The internal Pt1–X12 bonds are clearly represented as ELF bridges. On the other hand, the orientation of the extended lone pair electron distribution of the X24 atoms (which represents the real donor properties of the *exo*-ligands X24) is oriented *perpendicular* to the Pt1–X24 direction and is separated from Pt1 by an ELF-valley. In other words, there is obviously no Pt^{II}–X^e interaction present.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie. The Max-Planck-Gesellschaft supports one of us (J.-H. C.) by a scholarship.

References

- [1] L. Wöhler, F. Martin, Ber. Dtsch. Chem. Ges. 1909, 42, 3958.
- [2] L. Wöhler, S. Streicher, Ber. Dtsch. Chem. Ges. 1913, 46, 1591.

- [3] L. Wöhler, F. Müller, Z. Anorg. Allg. Chem. 1925, 149, 377.
- [4] G. Thiele, P. Woditsch, Angew. Chem. 1969, 81, 706; Angew. Chem. Int. Ed. Engl. 1969, 8, 672.
- [5] U. Wiese, H. Schäfer, H. G. von Schnering, C. Brendel, K. Rinke, *Angew. Chem.* **1970**, *82*, 135; *Angew. Chem. Int. Ed. Engl.* **1970**, *9*, 158; U. Wiese, *Dissertation*, Univ. Münster, **1970**.
- [6] H. G. von Schnering, U. Wiese, K. Peters, H. Schäfer, unpublished crystal data and parameters of the PtCl₃ structure, 1970.
- [7] G. Thiele, M. Steiert, D. Wagner, H. Wochner, Z. Anorg. Allg. Chem. 1984, 516, 207.
- [8] P. Woditsch, Dissertation Univ. Erlangen-Nürnberg 1969.
- [9] M. Degner, B. Holle, J. Kamm, M.F. Pilbrow, G. Thiele, D. Wagner, W. Weigl, P. Woditsch, *Transition Met. Chem.* 1975/76, 1, 41.
- [10] H. Schäfer, U. Wiese, C. Brendel, J. Nowitzki, J. Less-Common Met. 1980, 76, 63-72.
- [11] W. Gerhardt, H. Schäfer, Z. Anorg. Allg. Chem. 1985, 530, 227.
- [12] E. Schönherr, M. Wojnowski, A. Rabenau, S. Lacher, J. Less-Common Met. 1988, 137, 277.
- [13] G. M. Sheldrick, Program Package SHELXTL-plus. Release 5.1. Bruker Analytical X-Ray Instruments Inc., Copyright 1998.
- [14] H. G. von Schnering, R. Nesper, Z. Phys. B-Condensed Matter 1991, 83, 407.
- [15] H. G. von Schnering, M. Oehme, G. Rudolf, Acta Chem. Scand. 1991, 45, 873.
- [16] Yu. Grin, U. Wedig, H. G. von Schnering, Angew. Chem. 1995, 107, 1318; Angew. Chem. Int. Ed. Engl. 1995, 34, 1204.
- [17] Yu. Grin, U. Wedig, F. Wagner, H. G. von Schnering, A. Savin, J. Alloys Comp. 1997, 255, 203.
- [18] Yu. Grin, A. Zürn, L. Schröder, H. G. von Schnering, Beziehungen zwischen Periodischen Knotenflächen und Graphen, Abstract zur Tagung Theoretische Kristallographie, Hünfeld, 1996.
- [19] A. Zürn, Dissertation, Univ. Stuttgart, 1998.
- [20] H. G. von Schnering, Nova Acta Leopoldina, Halle (Saale), 1991, N. F. 65, Nr. 277, 89.
- [21] H. G. von Schnering, R. Nesper, J. Physique, Colloq. C7, 1990, 393; Angew. Chem. 1986, 98, 111; Angew. Chem. Int. Ed. Engl. 1986, 25, 110; Angew. Chem. 1987, 99, 1097; Angew. Chem. Int. Ed. Engl. 1987, 26, 1059.
- [22] M. Somer, U. Herterich, J. Čurda, W. Carrillo-Cabrera, A. Zürn, K. Peters, H. G. von Schnering, Z. Anorg. Allg. Chem. 2000, 626, 625.
- [23] R. Nesper, S. Leoni, Chem. Phys. Chem. 2001, 2, 413.
- [24] S. Leoni, R. Nesper, Acta Crystallogr. 2000, A56, 383.
- [25] E. Irran, K. Kollisch, S. Leoni, Chem. Eur. J. 2000, 6, 2714.
- [26] T. Hahn, (Edit.), International Tables for Crystallography, Vol. A, 2nd revised Edition, Kluwer Academic Publ. Dordrecht, 1996.
- [27] S. Andersson, M. Jacob, S. Lidin, Z. Kristallogr. 1995, 201, 3;
 Z. Kristallogr. 1995, 210, 315; Z. Kristallogr. 1995, 210, 826.
- [28] S. Andersson, M. Jacob, *The Mathematics of Structures*, R. Oldenbourg Verlag, München, 1997.
- [29] M. Jacob, S. Andersson, *The nature of mathematics and the mathematics of nature*, Elsevier, Amsterdam, 1998.
- [30] S. Andersson, K. Larsson, M. Larsson, M. Jacob, *Biomathe-matics*, Elsevier, Amsterdam, 1999.
- [31] O. K. Andersen, *Phys. Rev.* 1975, *B12*, 3060; O.K. Andersen,
 O. Jepsen, *Phys. Rev. Lett.* 1984, 53, 2571; O. Jepsen, O. K. Andersen, *Z. Phys.* 1995, *B97*, 35.

- [32] O. Jepsen, O. K. Andersen, The Stuttgart TB-LMTO-ASA program, version 47; Max-Planck-Institut für Festkörperforschung, Stuttgart.
- [33] P. Hohenberg, W. Kohn, *Phys. Rev.* 1964, *B136*, 864; W. Kohn,
 L. J. Sham, *Phys. Rev.* 1965, *A140*, 1133.
- [34] U. von Barth, L. Hedin, J. Phys. 1971, C4, 2064.
- [35] W. R. L. Lambrecht, O.K. Andersen, *Phys. Rev.* **1986**, *B34*, 2439.
- [36] O. Jepsen, O. K. Andersen, Solid State Commun. 1971, 9, 1763; P.E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. 1994, B49, 16223.
- [37] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.
- [38] K. Brodersen, G. Thiele, B. Holle, Z. Anorg. Allg. Chem. 1969, 369, 154.
- [39] H. G. von Schnering, J.-H. Chang, K. Peters, E.-M. Peters, F. R. Wagner, Yu. Grin, G. Thiele, Z. Anorg. Allg. Chem. 2003, 629, 516.